The contrastoid


An ensemble made of 90 degree hyperbolic paraboloids built on a rhombic dodecahedral frame, presenting unusually high degree of symmetry.



I modified the four sextets of the formerly discovered solid named “tetrahedral tessellator” in a way, that while the frame remained unchanged, the concave generatrices (trenches) will lean into the center and at the same time the convex ones (ridges) will rise twice as high.

This combined maneuver will cause the double bending of the isosceles triangles (their inner vertices will elongate), as a result the “star points” (the centers of the sextets) will transform into (half)axes with the length identical with the solid’s edges. Concomitantly, the former tetrahedral symmetry will turn into octahedral.

The starting point of the idea was, that I tried to maximize the contrast between the positive and negative generatrices, while preserving the tessellation property unaltered. First I was thinking of arcs, but meanwhile realized that the most extreme case will be given by some angled line segments, where the concave generatrices will overlap with the symmetry axes, with their corners reaching the shape’s center. The construction resulting from this action will be indeed kind of “limit case” as it will narrow to zero thickness along all the four axes.

The following practical steps were directly targeting the construction of 90 degree hiperbolic paraboloids as I understood in the imaginative way, that will be the result of the triangle’s transformation (see also the construction of the tetrahedral tessellator).

In the below image we can see that the O’ point of the initial polyhedron turned into the D’O section (half axis) of the saddle surface composition.

Since we took as much from the inside as we added to the outside, the volume of the contrastoid is equal with its predecessor, thus half of the rhombic dodecahedron’s volume as well (interestingly exactly r^3) and at the same time its edges are overlapping with the catalan solid’s edges. 



It has twenty four bent faces, twenty eight edges (twenty four convex, four concave) and fourteen vertices (eight triple edge meetings, six quadruple edge meetings). Two of the four margins of the hyperbolic paraboloids are situated on the edges of the rhombs, while the other two along the axes. The saddle surfaces are meeting in the solid’s center, each touching the nucleus with one end of its convex generatrix. The other endpoint of the convex arcs are found at the quadruple meetings of the rhombic dodecahedral frame. Both endpoints of the concave generatrices are situated in the triple edge meetings. 

Along the four axes of the shape the bent surfaces are forming kaleidocycle-like sextets on both sides (eight), while each one simultaneously belongs to two different axes. The hyperbolic paraboloids sharing the quadruple edge meetings are forming closed spaces. These shapes are owning tessellation properties, namely if they are laid on top of each other than they will completely fill the three dimensional space.

The contrastoid can be defined also as an ensemble of six “3D tiles” of this kind, joined along their edges. The shape of the gaps between the tiles are the exact negative mold of these, thus the compositions joined along the rhombs will form such a spatial network, where the mentioned tiles will alternate with the gaps in a fifty-fifty rapport. 

The saddle surfaces are meeting in four different ways:

1: In two edges: There are two subtypes: convex and concave meeting. In the first case one endpoint of each convex generatrix are touching in the solid’s center, forming 0 (zero) degree vectors. In the second case one endpoint of the concave generatrices are touching in the triple corners, forming 360 degree vectors. 

2: In one edge: This has also two subtypes, in one case we can identify a single straight line across the two neighboring surfaces. 

3: In two vertices: The endpoints of the convex generatrices are shared, these are meeting in the center, respectively in the quadruple corners. 

4: In one vertex: This has three subtypes. In all cases one endpoint of the convex generatrices are touching in the center. In one case the two convex generatrices are forming a smooth curvature, in the second case the outer endpoints are found on the opposite quadruple corners (polar disposition), while in the third case the faces are situated on the two opposite sides along the axes joining the triple corners. 


Relatedness with 2D shapes

Starting from the correlation between the regular hexagon and the rhombic dodecahedron, the contrastoid’s 2D mate must be the radial triad of the alternated triangular tiling, as it is showed in the darker sector of the below image (maroon or olive).

Just as the hexagon’s surface is double of the triangle triads that make it up, the volume of the rhombic dodecahedron is also double of the contrastoid, namely the shape of the voids are identical with the shape of the six 3D tiles that make up the composition. Actually there are twelve pieces of “void halves”, these laid on top of each other in pairs will make up the negative molds of the ensemble’s six cells. The 3D equivalent of the hexagon’s three diagonals are the four axes of the rhombic dodecahedron. 

The contrastoid has an extremely complex symmetry. Both the whole composition and its components have many symmetry planes. Beside the direct mirroring, the 90, respectively 60 degree turns are generating the pattern repetitions. 

My assumption is that it’s the structure with the highest degree of formal complementarity.

The meaning of its name is “antagonistic shape”, which refers to the harmonic interlacement of the parabolas forming the convex and concave extremes (tangencies).  


Leave a Reply

Your email address will not be published. Required fields are marked *