A mértan területén kifejtett alkotó tevékenységem konkrét kiindulópontját a hatodkörívek (szextánsok) különleges tulajdonságainak intuitív felfedezése jelentette. Sokkal inkább esztétikai szükséglet, mint tudásszomj volt ennek a pszichológiai mozgatórugója. Észrevettem, hogy ez a szimpla forma egyféle alap-összetevő, amiből különböző, megkapóan harmonikus struktúrát lehet a síkban képezni.
Egyáltalán nem túlzás a megszállottság kifejezést használni arra az intenzív pozitív érzésre, ami folyamatosan motivált, egyfelől, hogy gyakorlati szinten kisérletezzek ezzel az „absztrakt sejttel”, másfelől meg, hogy metafizikai szinten is elmélyedjek.
Az általam elsődlegesen beazonosított kompozíciók az egyenlő oldalú háromszögek vázára épülő ív triádok voltak, amiből négy típus létezik: három konkáv, három konvex, két konvex és egy konkáv, egy konvex és két konkáv. Az alapháromszöggel való viszonyukból kiindulva ezeket „-3, +3, +1 és -1” névre kereszteltem, utalva a megkülönböztetésért felelős, kapcsolódó körszegmensek tájolására.
Három, egymást érintő (tangens) kör közötti hézag jelenti az első esetet (-3), a második és harmadik lehetőséget ugyancsak három, de ezúttal egymás középpontjait érintő körök közös halmazai biztosítják, ahol a központi hármas metszet a +3-as, a kettős metszetek pedig a +1-esek, végül a negyedik esetet két tangens kör, valamint a közéjük helyezett, az előbbiek középpontjait szimultán érintő, centrális harmadik jelentik, ahol a -1-esek a központi kör metszésből kimaradó szegmensei. A görbe oldalú háromszögeket szimmetrikusan összeillesztve nagyon szép mintákat kapunk, melyek a legkifejezőbbek, ha komplementer színeket használunk, sakktáblaszerűen.
Megjegyzés: csak utólag hallottam a híres Élet virága mintázatról, felismerve, hogy ugyanazok az egységek építik fel, mint az általam generált kompozíciókat.
A fenti JinJang-szerű konstrukciót hat fehér és hat fekete +3-as és -3-as, vagy hat +1-es és -1-es építi fel, attól függően, hogy az egyes háromszög oldalak kétoldalán húzódó ívek melyik felét tekinted határvonalnak. Mivel a konvex és konkáv görbék összege egyforma bármelyiket is választanád, úgy a fehér, mint a fekete szektorok felülete is ugyanakkora, mintha egyenlő oldalú háromszögeket vagy rombuszokat használtunk volna a tapétázáshoz.
****************************************************************************
Habár direkt módon nem kapcsolódik ide, megemlíteném egy kisléptékű, viszont személyes tekintetben jelentős eredményre jutásomat: ez a „legtökéletlenebb háromszög” fogalma. Az elgondolás magva az egyenlő oldalú háromszöggel való fordított viszony, utóbbit tekintve a „legtökéletesebbnek” a kategóriában. Mivel ott mindegyik oldal egyenlő, az ezzel ellentétes esetben ezek a legkevésbé egyformák kéne legyenek. A háromszög oldalai közti viszonyt három arány határozza meg: a/b, b/c és a/c. Ahhoz, hogy a legegyenlőtlenebb komplexumot kapjuk, az ezen három viszony közötti legkiegyensúlyozottabb is a lehető legtávolabb kéne maradjon az egyformaságtól.
A talányra az a/b=b/c; a=b+c kettős összefüggés adta meg a választ, ami egy ismert másodfokú egyenlethez vezetett, 1.618003…-as megoldással. Ez pedig nem más, mint (meglepetés!) az aranymetszés. Az így létrejött „legkevésbé szabályos háromszög” valójában egy egyenes szakasszá lapult ki, ahol két csúcs a végpontokban, míg a harmadik ezek között, egyikhez 1.618033…-szor közelebb található.
***************************************************************************
Idővel szó szerint „szintet léptem” és immár a harmadik dimenzióban kezdtem kutakodni, első célként a hatodkörív térbeli megfelelőjének a beazonosítását tűzve ki. Kissé kiábrándító volt rájönni, hogy ilyen dolog nem létezik, mivel egy gömbfelület konvex és konkáv részegységeit nem lehet a 2D-s tapétázáshoz hasonló komplementer módon összeillesztgetni. Azért továbbra is törtem a fejem, válaszokat kerestem.
Első kiagyalásom a kifejezően „gömbök közti tér” névre keresztelt struktúra volt, ami konkrétan nem más, mint négy tangens gömb közötti anyaghiány, hézag. Mivel ez nem egy teljesen zárt űrrész, megállapítotam, hogy parciálisan „mesterséges módon” kell leválasztani az összefüggő térhálóból, ennek helyes módozata pedig az lenne, hogy a szűkületeknél vonom meg a határokat.
Akkoriban még azt hittem, hogy egy szorosan csomagolt gömbhalmaz egyedei között kizárólag ilyen tetrahedrális hézagok képezik a közöket, csak később értettem meg, hogy kétféle űrrész (a másik az oktahedrális) sajátos váltakozása adja ki a teljes képet. Valójában ugyanaz a tévedés, mint annak a feltételezése, hogy csupán szabályos tetraéderekkel maradéktalanul ki lehet tölteni a háromdimenziós teret (ide értve Arisztotelészt is). Ez így nem lehetséges, miközben egy bizonyos tetraéder-oktaéder kombinációval már igen.
A régebbi 2D összefüggéseket követve a második (komplementer) ötletterv kiindulópontja az volt, hogy négy gömb olyan módon metssze egymást, aminek folyományaként mindegyik érinti a többiek középpontjait. Eképpen a centrális, a négyes metszet által határolt közös halmaz egy gömbszerű tetraéder lesz. A tetrahedrális hézaggal ellentétben, amit teljes mértékben nem lehet a háromszöghézagok 3D-s leképzésének tekinteni, ez a tetraéder, melyet kizárólag görbült, konvex felületek határolnak, pontosan a Reuleaux háromszög térbeli megfelelője.
Néhány év múlva első ízben hallottam a 3D nyomtatási technológiáról és a virtuális dizájnerek, valamint fogtechnikusok segítségével hamarosan kezemben tarthattam a konkrét tárgyakat is. Következésképpen méginkább bevontam magam az érdekes alakzatok tervezésébe.
****************************************************************************