Körülírása
Összekapcsolt konvex és konkáv ívtriádok képezte vázon kifeszített, huszonnégy identikus hiperbolikus felület által alkotott, tetrahedrális szimmetriájú térkitöltő alakzat.
Olyan oldalak által közrezárt térrész, melyek két, egymással központban csatlakozó, a lehetséges legnagyobb görbülettel rendelkező, azonos tölcsérfelszín külső és belső részei közti szimmetrikus-folyamatos átmenetet képviselik.
*****************************************************************************
Az elképzelés
A nyeregfelületekkel való fordított viszonyon alapul. Miközben ezutóbbi főgörbéinek vektorai merőlegesek a függőleges tengelyekre, a keresett alakzat alkotói ezek érintői kell legyenek. Összetevői emígy bizonyos „fordított majomnyergeknek” tekinthetők, mivel a főgörbék mindkét esetben „S” formájúak, a köztük lévő lényegi különbséget a tengelyhez viszonyított antagonisztikus elhelyezésük adja. Az egyszerűség kedvéért, a két görbe általános dőlésének ábrázolására parabola szektorok helyett 90 fokos köríveket fogok használni az alábbi képen.
A majomnyereg egy a hiperbolikus paraboloidhoz hasonló hullámos felület, azonban ez nem kettes hanem hármas szimmetriával rendelkezik. Három „S” formájú főgörbéje (kék), valamint három egyenes szakasza (piros) van, miközben a struktúra többi részét az ezek közötti egyenletes átmenet teszi ki. Az origóban mindegyik radiális metszet vektorai merőlegesek a függőleges tengelyre.
Az alábbi ábra jobboldalán egy horn tórusz külső és belső felszíne (részlegesen) szimultán látható. Ha csak a felső féltekén lévő alkotókat vesszük figyelembe, beazonosíthatunk három centrumba konvergáló konvex ívet (zöld), melyek egy tölcsérbelsőre vagy „fekete lyukra” emlékeztető örvényszerű forgásfelszín részei. Ha meg csak az alsó féltekén lévő alkotókat vesszük számba, akkor ugyancsak három, de ezúttal a centrumból divergáló, valamint konkáv ívet találunk, melyek egy tölcsérkülsőhöz vagy tövishez hasonló forgásfelszín részei. Ahogy az nyilvánvalóan látszik: a kettő egymás ellentéte. Az „S” görbék itt az a+a-, b+b- és c+c- felezöld-felekék ívhullámok, melyek mind érintői a függőleges tengelynek.
Hogyan szerkeszthetnénk egy olyan formát, mely egyenletes átmenetet képezne ezen külső és belső tölcsérfelszínek között? Elméletileg, bizonyos értelemben a nyeregfelületek ellentétéről lenne szó, mivel ott a sima konvex (kupola külső) és sima konkáv (kupola belső) struktúrák „kereszteződése” valósul meg. Ez az „ambivalens tölcsér” lesz az alakzatunk alapmotívuma. Hagyjuk ennek a feladatnak a részleteit a későbbiekre és haladjunk tovább a nagyvonalakkal.
A másik prioritás az, hogy tetrahedrális szimmetriát nyerjünk úgy, hogy közben a konvex és konkáv összetevők között a legmagasabb fokú legyen a kontraszt (szakadékosság), ugyanakkor megőrizve a pontos fele-fele arányt is. Így már meglehetősen beszűkűl a lehetőségek tárháza és felvetődik a „legjobb megoldás” fogalma.
*****************************************************************************
Szerkesztés
1. A váz
Az előbb említett „legnagyobb kontraszt” vonatkozásában a korlátozó tényező a konkáv összetevők irányából jön, mivel a tetrahedrális felállítás négy tengelye nem engedi, hogy a görbület meghaladjon egy bizonyos mértéket. Elméletileg a konvex alkotók ennél sokkal nagyobb meghajlást tudnának produkálni, beleértve a sajátos esetet, mikor folytonosságot képeznének más oldalon lévő társaikkal.
Habár mindig a végleteket keresem, eleinte nem vettem észre a tengelyek menti konkáv alkotók és az ezeknek megfelelő konvex görbületek közti különleges kapcsolatot, mivel az utóbbiak látszólag nem érnek el konkrét határokat (kontinuitás vagy tangencia) ezeknél a szögeknél. Csak később tudatosult bennem, hogy ezek a pozitív kilengések is pontosan a tetrahedrális vázszerkezeten belüli lehetséges maximális elhajlást jelentik. Ennek folyományaként ez az alakzat is tesszalációs tulajdonsággal fog bírni, mint a korábbi cikkekben tárgyaltak.
Határozzuk most meg ezen ívek pontos mibenlétét. Röviden az adott rombdodekaéderes struktúra (élek és tengelyek) Bézier görbéi fogják őket megtestesíteni. Amúgy ez a keret pontosan egybeesik a kontrasztoid vázával, ezért a korábbi kompozíció derivátumának is tekinthető. Valójában mindkettő a tetrahedrális tércsempéző továbbfejlesztéséből származik, a köztük lévő lényegi különbség az, hogy amíg a kontrasztoid esetében a konvex és konkáv alkotók a kerettel egybeeső törtvonalakká módosultak, addig az új alakzat összetevői ezek egyenletesen lekerekített verzióját jelentik (lásd a fenti képen).
Ebben az értelemben a tangenciális kohézió alkotói átmenetet képeznek a tetrahedrális tércsempéző és a kontrasztoid összetevői között, nem csupán a térbeli elhelyezés tekintetében, hanem a közös tulajdonságok viszonylatában is: egyenletesek, mint a tetrahedrális tércsempéző egyenes szakaszai, de merőlegesen keresztezik az origót mint a kontrasztoid belső szegmensei.
Az elementáris tetrahedrális tércsempézőhöz hasonlítva a közös tulajdonság, hogy mindkettőnek egyenletesek a görbületei, az origó keresztezése viszont egészen más (vízszintes/ függőleges). Ugyanakkor az elhajlások ellentétes irányúak és jelentősebbek (109.47 fok/ 35.36 fok), vagyis a legnagyobb konvex ívek ott lesznek, ahol a másiknál a legnagyobb konkávok, míg a legnagyobb konkáv ívek ott, ahol a másik legnagyobb konvexei találhatóak.
Megjegyzés: Mindegyik tetrahedrális tértöltőnek a felszínén találhatóak a bizonyos O’ pontok, a középponttól fél-élhossz távolságra. Valójában az alakzatok között ennél sokkal több az egybeesés, ide sorolódik tíz csúcs (négy tetrahedrális, hat oktahedrális) melyeket tizenkét él és további tizenkét, sugaras triókat alkotó egyenes szakasz köt össze. Térfogataik is egyformák, mindegyiküké pontosan r^3.
2. A felületképzés
Térjünk most vissza az „örvény-egyesítéshez”. Úgy a külső, mint a belső tölcsérfelszínekből egymással az origóban törésmentesen kapcsolódó, szimmetrikus elrendezésű parabola ívtriádjaink vannak és ezek az alkotók lesznek az egyedüli összetevők, melyeket a szóban forgó forgásfelszínekből megtartunk. Az „S” formájú görbületek huszonnégy egyenlő részre osztják a vázat, ezek mindegyikét egy konvex, egy konkáv, valamint egy egyenes szektor határolja.
Felületképzés tekintetében a konvex és konkáv ívek közti egyenletes átmenetet az előbb említett három különböző szektor által határolt minimálfelületek fogják biztosítani.
Eképpen a konvex ív fokozatosan konkávvá alakul át, egy a belső, stabil végpontja körüli 60 fokos keringő mozgás folyamán, miközben a külső végpontja követni fogja a rombdodekaéder-keret élét. Majd a konkáv ív viceversa, vegül az adott ferde hatszögön belüli hatodik transzformáció után a kaleidociklus bezárul. Miután ugyanez a manőverkombináció lezajlik a tetrahedrális felállítás többi (három) ferde hatszögkeretében is az alakzat elkészült.
*****************************************************************************
Összefüggése síkbeli formákkal
Az elemi tetrahedrális tércsempéző leírásában megfogalmazott következtetésekből kiindulva a tangenciális kohézió 2D megfelelője egy bizonyos „torzított háromszög” kell legyen, mely egy a szabályos háromszöges tesszaláció módosításából létrejövő mozaikozást alkot.
Ezeknek a háromszögeknek az élei ugyanolyan módon térnek el az eredeti egyenes szakaszoktól, ahogy a tangenciális kohézió kaleidociklusai a ferde hatszögkeret által határolt minimálfelületekétől: mindkettő a lehetséges legnagyobb görbületet hozza létre a cellakeret (konvex alkotók), valamint a tengelyek (konkáv alkotók) által képezett határokon belül. A 2D forma esetében ez a keret egy szabályos hatszög, míg a 3D-s megfelelője esetében egy rombdodekaéder.
Mivel a síkbeli felállítás a hullámos háromszögek irányítását is feltételezi (óramutató járásával megyegyező vagy ellentétes), kijelenthetjük, hogy a szóban forgó térkitöltő alakzat valódi 2D megfelelője egyszerre mindkét irány. Ez könnyen reprezentálható egy átlátszó papír két oldalán.
Ha az ambivalens tölcsérek koncentrikus felépítését a majomnyergekéhez akarjuk hasonlítani, akkor az alábbi lineáris ábrázolással lenne kifejezhető a viszony esszenciája. Itt az „a” verzió fluid (piros) görbéi a nyeregfelületek jellegzetességeit, míg a „b” verzió csúcsíves (zöld) mintája (a váltakozó gerincek és sáncok 2D megfelelői) a tölcsérekét szemlélteti.
Végül, de nem utolsósorban az alakzat jelentése dióhéjban: „tangenciális”, mivel a konvex és konkáv alkotók a tengelyekre simulnak (vektoraik 0 fokos szögben találkoznak), valamint „kohézió”, mivel a jelentős szabdaltság folyományaként térfogat függvényében relatív nagy felülete van, emiatt erős a kötés a tesszaláció sejtjei között.
*****************************************************************************
*****************************************************************************